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Abstract— The ever growing demand of more resolution for
ground telescopes makes of fundamental importance the use of
computationally efficient algorithms. In this paper we consider
some efficient algorithms for the adaptive optics system of large
telescopes. The main peculiarities of the considered procedures
are to be effective and scalable to telescopes of whatever size.
In particular, we propose a decoupled representation of the
turbulent phase in which each of the subsystems models the
temporal dynamic of a turbulent mode (e.g. the evolution of
a Zernike mode if using the Zernike bases to represent the
turbulence). The model matrices are identified using recently
developed subspace methods. Then, using it in a Kalman-based
approach, it provides good performances for the closed-loop
system. Furthermore, we analyze and compare other possible
approaches, such as PI controllers and AR predictive models.
Since computational efficiency plays a very important role
in this framework, we evaluate the obtained results both for
the absolute performances and for the computational efforts
necessary to obtain them. The proposed Kalman-based model
ensures a good tradeoff between complexity and performances.
Anyway, when the system allows to use some more resources,
it can be worth to consider the use of high order AR models.

I. INTRODUCTION

Adaptive optics (AO) systems are of fundamental impor-

tance to improve the real resolution of large telescopes. It is

well known that the theoretical resolution of a lens is limited

by the diffraction effect: For this reason the size of next

generations of ground telescopes is progressively increasing.

However, local changes of the atmospheric refraction index

affect the phase of light wavefronts arriving on the telescope

aperture, thus significantly reducing the real resolution of

the telescope. Then, the aim of the AO system is that of

compensating the turbulence effect allowing the telescope

resolution be again diffraction limited.

An AO system is usually formed by a proper wavefront

sensor, a set of deformable mirrors (DM) and a control unit

which should compute proper inputs for the DM to adapt

their shape to the current value of the phase distorted by

the turbulence. The set of such distorted phases over the

telescope aperture is also called the turbulent phase.

Here we consider a modal approach, that is the turbulent

phase is projected on a set of spatial bases, both to reduce

the signal dimension and the influence of noise. Then the

projection of the phase on each this bases corresponds to a

mode of the system.
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Two of the main issues in controlling the DM are that

the measurements can be quite noisy and, due to the time

necessary for image formation on the sensor, there is a two

sampling period delay in the control action [9][8][10]. Hence

the AO system performance largely depends on the ability

of the control to adapt itself to the temporal evolution of

the turbulent phase. Consequently, several control algorithms

proposed in literature include a prediction step to reduce

the effect of the delay. However, the computation of the

proper correction is still a challenging task because the

system usually works at high frequencies, therefore, the

control action has to be sufficiently simple to allow for fast

computation.

Specifically, in this paper we consider the case of algo-

rithms for controlling the DM in particularly large telescopes:

In fact, to make an algorithm scalable (that is to make

it usable for whatever size of telescopes), it has to be

computationally efficient, i.e. linear (or almost linear) in the

number of actuators and sensor measurements (or in the

number of modes). To make this possible, one cannot take

into account of the relations between different modes: Thus

the temporal cross-correlations are discarded. This results in

a decoupled model of the system, where each of the modes

is considered independently on the others.

Recently, several state-space models have been considered

([9][8][10],[12],[1]), with the aim of using a Kalman pre-

dictor both to compensate the delay effect and to reduce

the noise influence. Motivated by these works, we propose

a new state-space model of the turbulence, which is both

computationally cheap and quite effective. The system is

decomposed in a set of decoupled subsystems, where each

of them models the temporal dynamic of a mode. The

parameters of each of the subsystems are computed using a

subspace identification algorithm, specifically the PBSID [5],

[6]. Then, the identified model is used in a Kalman approach

to predict the temporal evolution of the turbulence.

Furthermore, in Section IV and in our simulations, we

consider also other possible control strategies, namely an

approximation of the zonal control [11], a PI controller, and

a prediction based control which uses AR models. Even if at

the cost of a greater computational complexity and memory

requirement, in our simulations high order AR models ensure

the best performances.

Then, the choice between using the proposed Kalman-

based approach or high order AR models depends on the

allowed computational complexity and memory resources.

Finally, it may be worth to say that the proposed state-

space model may be also included in other control strategies.
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II. TURBULENT PHASE CHARACTERIZATION

The turbulent phase is assumed to be zero-mean stationary

and spatially homogeneous. Let u and v be two unit vectors

indicating two orthogonal spatial directions, and let φ(u, v, t)
be the value of the turbulent phase on the point (u, v)
at time t on the telescope aperture plane, where u and v
are the coordinates of the point along u and v. Then, the

covariance between two values of the turbulence, φ(u, v, t)
and φ(u′, v′, t), depends only on the distance, r, between the

two points: Cφ(r) = E[φ(u, v, t)φ(u′, v′, t)],∀(u, v, u′, v′),
such that r =

√

(u − u′)2 + (v − v′)2.

According to the Von Karman theory, the shape of the

spatial covariance function, Cφ(·), is completely character-

ized by the values of two physical parameters, r0, the Fried

parameter, and L0, the outer scale ([11], [7]).

In particular, roughly speaking, the Fried parameter ap-

proximatively corresponds to the diameter of a circular area

over which the variance of the phase distortion (without any

AO correction) is 1 rad2 [11]. Notice that this, 1 rad2, is

commonly accepted as the maximum tolerable distortion to

have usable astronomic observations.

From a temporal point of view, the turbulence is generally

modeled as a (linear) superposition of a finite number l of

independent layers, moving at different altitudes, with differ-

ent energies and velocities. A commonly agreed assumption

considers that each layer translates in front of the telescope

pupil with constant velocity vi (Taylor approximation [11]).

III. AO SYSTEM DESCRIPTION

To reduce the phase distortion due to the presence of the

atmosphere, telescopes are provided with a set of deformable

mirrors, which act like feedbacks on the turbulent phase

arriving on the telescope aperture (see Fig. 1). Then the

AO system is formed by the wavefront phase sensor, the

deformable mirrors and their control unit. Its goal is that of

properly controlling the deformable mirrors to compensate

the turbulence effect.

Fig. 1. Scheme of the adaptive optics system.

As shown in Fig. 1, the incoming turbulent phase ϕ(t)
is corrected by the current shape of the deformable mirrors,

ϕd(t). Then, a wavefront sensor provides a noisy measure-

ment em(t) related to the value of the residual phase e(t).
em(t) is used to reconstruct the current uncorrected turbulent

phase (typically projected on a set of spatial bases) y(t).
Finally the control unit takes y(t) as input and computes

a proper control for the deformable mirrors. Mostly due to

the time for image formation on the sensor, there is a 2-

step delay before the control unit ([9], [8]), which has to

compute the control u(t) exploiting measurements only up

to time t − 2.

By assumption the wavefront sensor provides measure-

ments of the phase slopes (along both the spatial directions

u and v) between the points on a grid L over the telescope

aperture. This, for instance, is the case of the most used

wavefront sensor, that is the Shack-Hartmann device.

For small values of e(t) (i.e. as far as the AO system is

working properly), the wavefront sensor transfer function can

be assumed to be static and linear, em(t) = He(t)+ wm(t),
where wm is a zero-mean white noise, due to the measure-

ment process. Let us call Qm the covariance of wm. For

simplicity of notation, in the following we will assume that

Qm = σ2
mI , where σ2

m is the measurement noise variance.

Notice that, from an optical point of view, the phase trans-

lations over the entire telescope aperture can be neglected,

hence the AO system does not take into account the projec-

tion of the turbulent phase on the vector u0 = [ 1 1 . . . 1 ]T .

Thus, we consider ϕ(t) as the vector containing the values

of the turbulent phase at time t neglecting its projection on

u0. This is also in agreement with the assumptions taken on

the wavefront sensor: Indeed, measurements of the slopes do

not allow the reconstruction of the phase mean.

In this paper, we consider a modal approach, that is we

represent the turbulent phase ϕ(t) as projected on a set of

spatial bases U =
[

u1 . . . un

]

: ϕ(t) = Ux(t) + er(t)
, where er(t) = ϕ(t)−Ux(t) is the representation error and

x(t) = U †ϕ(t) (U † is the pseudo-inverse of U ). In particular,

we consider the bases provided by Principal Component

Analysis (PCA) and we neglect the coefficients associated

to low energy bases [3]. This can be thought both as a

dimensionality reduction step (n < |L|), and as a denoising

procedure (the discarded coefficients are usually those more

affected by noise).

Notice that, even if models in Section IV are presented

assuming to use a PCA representation, in fact similar con-

siderations can be repeated with minor changes for every

other choice of the spatial bases. Analogously, we expect

the results in Section V would not change very much using

other bases.

The reconstruction procedure is performed by premulti-

plying F = (HU)† to the measurement vector em(t) (this

is called a vector-matrix-multiply (VMM) reconstructor):

y(t) = Fem(t). Let ϕd(t) = Uxd(t)+ ed(t), where xd(t) =
U †ϕd(t), then

y(t) =
(

x(t) − xd(t)
)

+ w(t) , (1)

where w(t) is zero-mean and its covariance is R ≈ FFT σ2
m.

If not differently specified, hereafter we assume R =
FFT σ2

m.

It is a common assumption ([11][9]) to take also the

deformable mirrors transfer function as linear and static, i.e.

ϕd(t) = Du(t).
Then, the aim of the control unit is that of computing a

proper u(t), such that to minimize the energy of ϕ(t)−ϕd(t),
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that is to minimize CE(t) = Trace
(

var
(

ϕ(t) − ϕd(t)
)

)

/m,

where m = |L| and CE(t) is the coherent energy at time t
(e.g. the variance of the residual phase).

In literature, deformable mirrors are usually characterized

by the so called interaction matrix D̄, which, using our

notation, can be written as D̄ = HD. In practice, this

corresponds to directly considering the relation between the

voltages used as input for the deformable mirrors and the

corresponding measured slopes.

Then, the simplest kind of control u used in AO system

is that provided by the multiplication of measured current

residuals em(t) for the pseudo-inverse of the interaction

matrix D̄†: u(t + 2) = u(t + 1) + D̄†em(t). In this case the

the temporal delay is discarded (assuming ϕ(t + 2) ≈ ϕ(t))
and the aim is that of correcting the measured phase residual:

em(t)− (HD)D̄†em(t) ≈ 0. For comparison with the other

methods, in this paper we consider a simple approach similar

to that described above: We compute u(t + 2) to minimize

y(t)−FHDu(t + 2), then u(t + 2) = u(t) + (FHD)†y(t),
which, after some simple matrix manipulations and exploit-

ing the considered assumptions becomes u(t + 2) = u(t) +
y(t). Hereafter this will be called zonal control (even if in

fact it is only an approximation of the zonal control).

Finally, to give some intuition on the causes of error for the

considered AO system, we distinguish three sources of error

as follows: Consider the residual phase in a zonal control

approach (recall that D = U ),

ϕ(t) − ϕd(t) = Ux(t) + er(t) − Du(t)

= Ux(t) + er(t) − D(u(t − 2) + y(t − 2))

= Ux(t) + er(t) − U(xd(t − 2) + x(t − 2)

− xd(t − 2) + w(t − 2))

= Ux(t) + er(t) − Ux(t − 2) + Uw(t − 2)

= U(x(t) − x(t − 2)) + Uw(t − 2) + er(t) .

Since w is white it immediately follows that,

var
(

ϕ(t)−ϕd(t)
)

≈ Uvar
(

x(t)−x(t−2)
)

UT +URUT +Σer
,

where Σer
is the covariance matrix of er. Then

CE(t) can be approximated by the sum of three terms

ǫd(t) = Trace
(

var
(

x(t) − x(t − 2)
)

UT
)

/m, ǫn(t) =

Trace
(

URUT
)

/m, ǫr = Trace
(

Σer

)

/m.

Since we are interested to the asymptotic behavior of the

system, the time index t can be depicted from the equations.

As already anticipated, the above error terms correspond to

three different causes of error: CE ≈ ǫd + ǫn + ǫr. First,

ǫr corresponds to the representation error, i.e. the error due

to the dimensionality reduction step. ǫn is the component

due to the presence of measurement noise, and ǫd is due to

the temporal delay between the measurement instant and the

application of the corresponding control.

We say that an AO system is calibrated when the above

three terms are (approximatively) equal. Since this condition

determines a good tradeoff between the requirements for the

different parts of the system and the overall performances, it

is usually considered the preferable working condition when-

ever it is feasible. In a modal approach the representation

error cannot be reduced (when the number of considered

bases has already been chosen), thus the aim of the control

approaches presented in the following section is to determine

u to reduce the effect of the delay and of the measurement

noise. We refer the reader to [11], [8], [1] for more detailed

descriptions of AO systems.

IV. MODAL CONTROL FOR LARGE AO SYSTEMS

Due to the constant demand for more resolution, the lens

size of next generations of ground telescopes is progressively

growing. On the other side, the AO system often works

at high frequencies, and the development of more effective

photon sensors will probably make them even higher. There-

fore, the control action has to be sufficiently simple to allow

for fast computation, although measurement noise and the

presence of the 2-step delay in the system have to be properly

handled to reduce their effect.

It has already been shown ([2], [1]) that the coefficients

in x are typically not temporally uncorrelated. Furthermore,

especially when the sampling frequency is not so high (e.g.

the system dynamic is richer), this temporal correlation

can be exploited to improve the AO system performances.

However, at high frequencies and for large systems (i.e. n ≈
103 or even larger) there might not be enough time to make

possible the use of a model taking into account of cross-

correlations between the spatial modes. Furthermore, such a

model may also be particularly sensitive to changes in the

operational conditions: e.g. turbulence characteristics may

vary over time. Then either the model is updated frequently

or its performances would probably progressively decrease.

Instead, models not considering cross-temporal correlations

are usually simpler to be updated and much less sensitive

for instance to changes in the wind direction.

Thus, control approaches characterized by models with

uncorrelated coefficients seem to be well suited for large

telescopes. In particular, the goal is that of providing models

which ensure good performances while requiring a linear (or

almost linear) computational complexity with the size of the

system (i.e. n). Since the complexity of the already presented

“zonal control” is linear with respect to n, this will be

considered for comparison as the simplest model satisfying

the complexity requirements. Other possible choices for the

control action will be presented in the following.

A. PI controller

A possible choice for the control is that of choosing to use

a PI. Let a subscript index i indicate the ith coefficient of the

corresponding vector, e.g. yi(t) denotes the ith coefficient in

y(t). Then, the considered PI controller is:

ui(t) = ui(t−1)+
(

kP +
ki

2

)

yi(t)+
(

−kP +
kI

2

)

yi(t−1) ,

for i = 1, 2, . . . , n. Notice that it has been used the following

realization of a discrete integrator: ui,I(t) = kI (1+z−1)
2(1−z−1) yi(t).

In the above equation kP and kI do not depend on i. While
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this is of course a particularly simple case, it is also quite

widely diffused. To ensure the stability of the closed-loop

system, the values of kP and kI are allowed to be only in

an interval between 0 and 1: The choice of the current values

for kP and kI is taken looking for those which minimize the

residual phase distortion in a set of learning samples.

B. Bayesian estimation and AR models

Undoubtedly, most of the difficulties in controlling large

AO systems are due to the necessity of reducing the delay

effect while using a computationally cheap approach.

If at time t we would know the value of x(t), it would

be quite simple to simply choose u(t) = (FHD)†x(t).
However, since x(t) is unknown, we cannot directly apply

the above control law, but, we can still use it after substituting

x(t) with its estimate x̂(t|t − 2) obtained by using the

available measurements up to time t − 2:

u(t) = (FHD)†x̂(t|t − 2) . (2)

Then, the idea of prediction based methods, considered in

this and in the following subsection, is that of providing a

proper estimate x̂(t|t − 2).
Exploiting temporal cross-correlations between the co-

efficients, {xi}, is practically forbidden for computational

complexity reasons (at least if not limited to small groups

of coefficients, e.g. a block decoupled system). Thus, we

consider only decoupled models for the coefficients, i.e. only

past values of xi can affect the value of x̂i(t|t − 2).
In a Bayesian framework we assume to have an a priori

knowledge of the physical characteristics of the system,

that is we assume to have estimations of the turbulent

layer characteristics (velocities, energies, r̂0, L̂0) and about

the measurement noise, i.e. R̂}. Thus, we can compute

estimations Ĉφ(r) of Cφ(r), ∀r, and consequently also the

estimate Σ̂xi
(h) of Σxi

(h) = Exi(t)xi(t − h), ∀h.

Then, the Bayesian estimate of xi(t) given the previous

available turbulent phase reconstruction (i.e. ξi(t − 2)
.
=

ui(t− 2)+ yi(t− 2) ≈ xi(t− 2)) can be written as follows:

x̂i(t|t − 2) = Σ̂xi
(2)

(

Σ̂xi
(0) + R̂(i, i)

)−1
ξi(t − 2).

When the temporal dynamic of the coefficient xi is

complex (not well approximated by a first order model),

it may be advantageous to use more past samples to get

better estimations. Furthermore, if we do not have a priori

information about the system, it may be of particular interest

to estimates such model directly from the data. This is similar

to the estimation of the coefficients for an AR model.

Let ξi(1), . . . , ξi(Tl) be a set of learning samples collected

running the AO system with a zonal control and summing

the current deformable mirror value to the measured residual

turbulent phase, i.e. ξi(t) = ui(t) + yi(t). Consider the

following (delayed) AR model, ξi(t) =
∑h̄

h=2 aihξi(t−h)+
εi(t), then the coefficients {aih} are computed minimizing

the L2 norm of εi on the learning set.

The control law for this kind of model becomes,

ui(t) = (FHD)†i
(

h̄
∑

h=2

aihξi(t − h)
)

,

where (FHD)†i indicates the ith row of (FHD)†.

Hereafter we will refer to ARi(k), k ≥ 1, as the AR

model, for the ith coefficient, computed as described above

with h̄ = k + 1. Analogously, AR(k) will indicate the AR

model, of order k, for all the coefficients.

C. Kalman-based methods

A disadvantage of the AR models is that their computa-

tional complexity and memory requirement, even if linear

in n, is also proportional to their order k. Since in the

considered system n can be quite large, k should be quite

small to reduce the system requirements.

Thus, the next step is that of looking for a state space

representation of the turbulent phase, where the state dimen-

sion, ν, is hopefully lower than nk. Then the use of a Kalman

filter will provide the optimal (with respect to the considered

dynamic system) predictions of the state. Several works

have been presented in the literature using a Kalman filter

approach, [9], [8], [10], [12], [1] just to give some examples.

As shown in [1], when the sampling frequency is not too

low, a completely decoupled model (i.e. not exploiting cross-

correlations between coefficients related to different modes)

if properly tuned can take to results (almost) comparable to

those obtained with non-decoupled systems.

Consider the following linear dynamic system,














x̄(t + 1) = Āx̄(t) +





0
u(t + 2)

0



 +





v(t)
0
0





y(t) =
[

C 0 −(FHD)†
]

x̄(t) + w(t)

(3)

where x̄(t) has the following block structure

x̄(t) =





ζ(t)
u(t + 1)

u(t)



 , Ā =





A 0 0
0 0 0
0 I 0



 ,

A and C are respectively ν × ν and n × ν matrices.

Furthermore, y(t) is the measurement vector (as defined in

(1)), x̄(t) is the overall state of the dynamic system, v(t)
and w(t) are assumed to be zero-mean white noise with

covariances Q and R. Finally ζ(t) is the part of the overall

state representing the current value of the turbulent phase.

To reduce the computational complexity of the algorithm,

the time-invariant asymptotic Kalman filter is used, i.e. the

Kalman gain is constant and set to its asymptotic value K̄.

Furthermore, it is simple to prove that in this case K̄ =
[

KT 0 0
]T

, where K = APCT (CPCT + R)−1, and

P is the solution of the following Algebraic Riccati Equation

(ARE): P = A(P −PCT (CPCT +R)−1CPAT +Q. Since

the last two blocks of the state vector can be trivially updated,

the only non elementary computation in the resulting Kalman

predictor is x̂(t + 1|t) = Ax̂(t|t − 1) + K
(

y(t) − Cx̂(t|t −
1) + (FHD)†u(t)

)

. Then, similarly to (2), the control law

can be written as follows: u(t) = (FHD)†Ax̂(t − 1|t − 2).
Where x̂(t− 1|t− 2) is the estimate of x(t− 1) provided by

the Kalman filter given the measurements up to time t − 2.

To have a feasible algorithm from the computational

complexity point of view, typical choices for the parameters
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are: C = I , ζ(t) = x(t), A, Q, R and K diagonal with

A(i, i) = E[xi(t + 1)xi(t)]
(

E[xi(t)xi(t)]
)−1

, Q(i, i) =
E[xi(t)xi(t)] − A(i, i)E[xi(t)xi(t)]A(i, i), R chosen as the

already defined measurement noise covariance matrix but

setting to 0 all the elements out of the principal diagonal, and

K̄ as the solution of the corresponding ARE. Unfortunately,

as shown in [1], these choices may take to quite pour

performances (due to the way in which the parameters have

been computed, i.e. the computed K is optimal for a system

which, statistically speaking, does not well approximate the

real one). However, differently tuning the parameters seems

to ensure quite good performances to the decoupled dynamic

system ([1]). Hence the aim of the following paragraphs is

that of proposing a proper way to compute the parameters

to be then used in the Kalman filter.

For simplicity of notation consider the reconstructed val-

ues of the ith coefficient in the modal representation of

the turbulent phase, ξi(1), . . . , ξi(t). Assuming that data can

be represented with a state space model, we can write the

following equations,
{

ζi(t + 1) = Aiζi(t) + Kiei(t)
ξi(t) = Ciζ(t) + ei(t)

(4)

where ei is white noise, and {ζi, Ai, Ci} are the blocks

corresponding to the ith mode in {ζ, A, C} of system (3).

Then, iterating the above state equation we obtain,

ζi(t) = (Ai−KiCi)
fζi(t−f)+

f
∑

j=1

(Ai−KiCi)
j−1Kiξi(t−j) ,

and assuming (Ai −KiCi) to be stable, f sufficiently large

(f = 25 in our simulations) and substituting in the output

equation we obtain,

ξi(t) =

f
∑

j=1

Ci(Ai − KiCi)
j−1Kiξi(t − j) + ei(t) .

Similarly to the AR case, the above equation approximatively

formulates ξi(t) as a weighted sum of its previous values.

However, here we are imposing a structure to the weighting

coefficients: This can be viewed as a regularization (thus

allowing a sort of de-noising of the sample data).

Minimizing the L2 norm of ei, we can use the above equa-

tion to estimate the values of ωi(j) = Ci(Ai−KiCi)
j−1Ki,

j = 1, . . . , f . If we choose to use a state ξi of dimension 1,

then we are trying to fit ωi(·) with an exponential, which in

some cases may not be a good fit. The choice of whenever

the identified parameters are well approximating or not the

sample data (or they are over-fitting them) it is in practice

a problem of order estimation of the system, and can be

determined using standard order estimation criteria (e.g. AIC,

MDL). By assumption the order of each of these subsystem

is bounded i.e. νi ≤ ν̄. Notice that in our simulations the

mostly chosen orders are either νi = 1 or νi = 2.

In fact, we have used a subspace identification ap-

proach, the PBSID algorithm, to identify the parameters

{Ci, Ai, Ki}. Since entering in the details of the PBSID

is out of scope of this paper, we refer the reader to [5],

[6], and references therein, for a complete description of the

algorithm. In the following we will refer to this model as the

Kalman-based approach.

V. SIMULATIONS AND DISCUSSION

In this Section we assume to be in VLT-like conditions,

e.g. d = 8 meter and ns = 40, and we compare the models

presented in the previous Section in some simulations.

In all the simulations we consider the atmosphere as

formed by six layers, characterized by the following param-

eters: v1 = 5u m/s, γ2
1 = 0.282, h1 = 0Km, v2 = 7um/s,

γ2
2 = 0.192, h2 = 2Km, v3 = 10u m/s, γ2

3 = 0.215,

h3 = 4Km. v4 = 15v m/s, γ2
4 = 0.185, h4 = 8Km.

v5 = 25v m/s, γ2
5 = 0.074, h5 = 12Km. v6 = 15u m/s,

γ2
6 = 0.052, h6 = 16Km. The sampling rate, fs, varies in

the range 250÷ 1000 Hz, depending on the simulation. The

turbulence has been simulated, at higher resolution than that

of the grid L, using the method described in [4].

We use 5000 samples to estimate the values of the param-

eters characterizing the control laws. Instead, the number

of validation samples is set to 1000. The performances

of the AO systems are evaluated in closed-loop using the

Strehl Ratio (SR) as performance criterion (as commonly

done by the astronomers). Notice that the SR can be well

approximated by the following: SR(t) ≈ exp(−CE(t)).
In Table I we report the Strehl ratios (the mean values

over the validation interval) obtained at Zenith direction

in five different simulation conditions and for six different

AO control models, which correspond to those described

in the previous sections. In the following we will ideally

divide the 6 control models in 2 groups characterized respec-

tively by “low” computational complexities and “relatively

higher” complexities. Notice that the complexities of all

the considered algorithms are linear in n (all the models

assume decoupled modes), then their differences are due to

the different multiplicative coefficients of n (which can be

significative in a real AO system).

We consider in the low complexity group the zonal control,

the PI (where its gains have been optimized on the training

data) and the AR(1) model. The others (AR(5), AR(20) and

the Kalman-based model (identified with subspace methods

as described in the previous Section)) are referred to as

“complex models” (however, we stress the fact that generally

speaking these are still computationally very convenient with

respect to controllers based on full matrices systems).

The rows in Table I reports (for each of the simulations)

respectively: the values of r0, L0, the number of used

spatial bases n, the sampling rate fs, the measurement

noise variance σ2
m, the theoretical representation error ǫr,

the theoretical delay error ǫd for zonal control, the theoretical

measurement noise error ǫn for zonal control, the measured

SR for the zonal control, the SR for the PI control, the SR for

AR models with three different choices of the order (AR(1),

AR(5), AR(20)), the SR for the Kalman-based model and,

finally, the state dimension ν of the Kalman-based model.

In both Simulation 1 and 2 we consider r0 = 0.2 m and

L0 = 20 m, but we use two different AO balanced systems
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TABLE I

AO CLOSED-LOOP PERFORMANCES

Sim 1 Sim 2 Sim 3 Sim 4 Sim 5

r0 [m] 0.2 0.2 0.4 0.4 0.4
L0 [m] 20 20 30 30 30
n 900 750 700 700 700
fs [Hz] 1000 667 500 500 250
σ2

m [rad2] 0.125 0.2 0.1 0.4 0.1
ǫr [rad2] 0.12 0.21 0.07 0.07 0.07
ǫd [rad2] 0.12 0.21 0.11 0.11 0.34
ǫn [rad2] 0.12 0.19 0.09 0.36 0.09

zonal SR 68.12 54.46 75.67 57.62 59.35
PI SR 70.15 56.66 77.21 68.53 60.08
AR(1) SR 68.76 55.54 76.58 60.79 61.58
AR(5) SR 71.72 59.66 79.47 70.45 70.21
AR(20) SR 75.10 63.61 82.55 75.27 73.53
Kalman SR 74.00 61.78 81.22 72.35 70.35

Kalman ν 994 836 775 732 775

(i.e. ǫr ≈ ǫd ≈ ǫn for a zonal control): In particular, we

evaluate the effect on the performances of simultaneously

varying the sampling rate, the measurement noise level and

the number of bases (maintaining the system in a balanced

condition). The more challenging conditions of Simulation

2 are reflected on the lower Strehl ratios with respect to

Simulation 1. The effect is a bit lower on complex models

than in the zonal control, but the difference is not very

significative.

In Simulation 3 we have a system in approximatively

balanced condition with r0 = 0.4 m and L0 = 30 m.

While in the first two simulations we considered the effect of

simultaneously varying all the sources of error (maintaining

the system in balanced conditions), in Simulation 4 and 5 we

separately evaluate the effect of increasing, respectively, the

measurement noise and the delay. It is apparent that in both

the cases the complex models are much more robust than the

others: The decrease of their SRs is approximatively half of

the SR decrease for the low complexity models.

Talking about the performances of the different methods,

it is clear that, due to their extreme simplicity, the PI and

AR(1) usually allow small SR improvements with respect

to the zonal control. However, the use of higher order AR

models or the described Kalman-based model seems to give

a significant performance improvement.

In terms of maximum performances, AR(20) gives the best

results. However the Kalman-based model provides almost

comparable performances. Furthermore it is worth to notice

that the computational complexity of AR(20) is typically sev-

eral times higher than that of the considered Kalman-based

model: In fact, the Kalman-based model is computationally

comparable to the AR(5) model, however, taking advantage

of the de-noising effect due to “data regularization” (using

the fitted model), it significatively outperforms the AR(5)

model. Furthermore, it gives the advantage of providing

information about the dynamic of the system which may

be exploited introducing other control strategies.

Finally, we investigated also the case of even higher orders

for the AR model, however, in our opinion the pour further

performance improvement does not justify the consequent

complexity increase.

VI. CONCLUSIONS

In this paper we have compared some computationally

efficient methods for computing a proper control for large

AO systems. Most of our attention has been concentrated on

intruding and evaluating a Kalman-based approach, where

the state-space model has been computed taking advantage

of recently developed subspace identification methods.

Then, we compared the proposed Kalman-based approach

with other suitable models. The comparison has been per-

formed on a set of VLT simulations,however, the computa-

tional efficiency of the considered algorithms ensures their

scalability even to larger systems (e.g. the ELT case).

Our results show that the use of computationally cheap

methods can be useful to significatively improve the perfor-

mances of large AO systems. In particular, two approaches

seem to be the most successful: the use of (quite) high order

AR models, and properly computed Kalman-based models.

The choice between the two, should be taken considering

both their performances and requirements (in terms of com-

putational complexity and allowable space in memory).
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